PARTIEL DU 28/10/2019

Les notes de cours, calculatrices et téléphones portables ne sont pas autorisés.

Durée de l'épreuve : 2 heures.

Questions de cours (5 points)

- 1. Rappeler la définition d'un processus gaussien.
- 2. Soient α, β dans $\ell^1(\mathbb{Z})$. Montrer que $\alpha \star \beta \in \ell^1(\mathbb{Z})$ et que $\alpha \star \beta = \beta \star \alpha$.
- 3. Soient $X=(X_t)_{t\in\mathbb{Z}}$ et $Y=(Y_t)_{t\in\mathbb{Z}}$ deux processus du second-ordre et stationnaires. On considère le processus $Z=(Z_t)_{t\in\mathbb{Z}}$ défini par

$$\forall t \in \mathbb{Z}, \quad Z_t := X_t + Y_t.$$

Donner une condition suffisante sur X,Y pour que Z soit stationnaire, et justifier.

Exercice (5 points)

Soit $Z=(Z_t)_{t\in\mathbb{Z}}$ un bruit blanc de moyenne 0 et de variance 1. Pour $t\in\mathbb{Z}$, on pose

$$X_t := Z_t + \frac{3}{2}Z_{t-1} - Z_{t-2}.$$

- 1. Montrer que le processus $X=(X_t)_{t\in\mathbb{Z}}$ s'écrit $X=F_\alpha(Z)$ avec $\alpha\in\ell^1(\mathbb{Z})$. Ce filtre est-il causal? Déterminer sa représentation en série de puissances.
- 2. Déterminer la moyenne et la fonction d'auto-covariance de X.
- 3. On cherche à défiltrer le processus X en appliquant un filtre $\beta \in \ell^1(\mathbb{Z})$ tel que

$$F_{\beta}(X) = Z.$$

Justifier que cela est bien possible, puis déterminer explicitement β .

Problème (10 points)

Soient $\rho, \theta \in \mathbb{R}$ des paramètres. Le but de ce problème est de démontrer que la fonction $\gamma \colon \mathbb{Z} \to \mathbb{R}$ définie par la formule

$$\forall h \in \mathbb{Z}, \qquad \gamma(h) := \rho^{|h|} \cos(\theta h)$$

est la fonction d'auto-covariance d'un processus stationnaire si et seulement si $|\rho| \leq 1$.

1. Montrer que la fonction d'auto-covariance d'un processus stationnaire $X=(X_t)_{t\in\mathbb{Z}}$ vérifie toujours

$$\forall h \in \mathbb{Z}, \qquad |\gamma_X(h)| \leq \gamma_X(0).$$

Que peut-on en déduire pour notre problème?

2. Construire un processus stationnaire X de moyenne nulle et d'auto-covariance

$$\forall h \in \mathbb{Z}, \quad \gamma_X(h) = \cos(\theta h).$$

Justifier soigneusement votre réponse.

3. Montrer que si $X=(X_t)_{t\in\mathbb{Z}}$ est un processus stationnaire de moyenne nulle, alors il en est de même du processus $\widetilde{X}=(\widetilde{X}_t)_{t\in\mathbb{Z}}$ défini par

$$\forall t \in \mathbb{Z}, \qquad \widetilde{X}_t := (-1)^t X_t.$$

4. Soit $Z=(Z_t)_{t\in\mathbb{Z}}$ un bruit blanc de moyenne nulle et de variance 1. Pour quelles valeurs de $\rho\in\mathbb{R}$ le théorème de filtrage garantit-il que la formule

$$\forall t \in \mathbb{Z}, \qquad Y_t := \sum_{k=0}^{\infty} \rho^k Z_{t-k}$$

définit bien un processus $Y=(Y_t)_{t\in\mathbb{Z}}$ du second-ordre et stationnaire? Préciser alors sa moyenne et sa fonction d'auto-covariance.

5. Soient $X=(X_t)_{t\in\mathbb{Z}}, Y=(Y_t)_{t\in\mathbb{Z}}$ des processus du second ordre, stationnaires, de moyenne nulle, indépendants. On considère le processus $W=(W_t)_{t\in\mathbb{Z}}$ défini par

$$\forall t \in \mathbb{Z}, \qquad W_t := X_t Y_t.$$

Montrer que W est du second ordre et stationnaire, et exprimer sa fonction d'auto-covariance en fonction de celles de X et de Y. Votre argument reste-t-il valable si l'on suppose X et Y décorrélés plutôt qu'indépendants?

6. Utiliser les questions précédentes pour conclure que la fonction γ est la fonction d'auto-covariance d'un processus stationnaire si et seulement si $|\rho| \leq 1$.